دالة المؤشر لكارميكائيل
يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. (مايو 2022) |
![](http://upload.wikimedia.org/wikipedia/commons/thumb/3/3d/CarmichaelLambda.svg/440px-CarmichaelLambda.svg.png)
في نظرية الأعداد، فرعا من الرياضيات، دالة المؤشر لكارميكائيل (بالإنجليزية: Carmichael function)، أو اختصارا، دالة كارميكائيل هي دالة λ(n)، مدخلها عدد طبيعي n وقيمتها هي أيضا عدد صحيح طبيعي، وحيث هذه القيمة هي أصغر عدد صحيح طبيعي m يحقق المعادلة التالية:
- am ≡ 1 (mod n)
لكل عدد صحيح a محصور بين الواحد و n، أوليٍ مع n.
سميت هذه الدالة هكذا نسبة إلى عالم الرياضيات الأمريكي روبرت دانييل كارميكائيل.
يطرح الجدول التالي القيم الستة والثلاثين لدالتي المؤشر لأويلر من جهة وكارميكائيل من جهة ثانية
n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
λ(n) | 1 | 1 | 2 | 2 | 4 | 2 | 6 | 2 | 6 | 4 | 10 | 2 | 12 | 6 | 4 | 4 | 16 | 6 | 18 | 4 | 6 | 10 | 22 | 2 | 20 | 12 | 18 | 6 | 28 | 4 | 30 | 8 | 10 | 16 | 12 | 6 |
φ(n) | 1 | 1 | 2 | 2 | 4 | 2 | 6 | 4 | 6 | 4 | 10 | 4 | 12 | 6 | 8 | 8 | 16 | 6 | 18 | 8 | 12 | 10 | 22 | 8 | 20 | 12 | 18 | 12 | 28 | 8 | 30 | 16 | 20 | 16 | 24 | 12 |
أمثلة عددية
[عدل]- قيمة دالة كارميكائيل مطبقةً على العدد 5 هي 4، أي أن λ(5) = 4، لأنه بالنسبة لكل عدد محصور بين الواحد والخمسة وفي نفس الوقت أولي مع الخمسة، يتوفر ما يلي:
- 14 ≡ 1 (mod 5)
- 24 = 16 ≡ 1 (mod 5)
- 34 = 81 ≡ 1 (mod 5)
- 44 = 256 ≡ 1 (mod 5)
خصائص دالة المؤشر لكارميكائيل
[عدل]أصغر قيمة
[عدل]افترض أن am ≡ 1 (mod n) بالنسبة لجميع الأعداد a الأولية مع n. إذن λ(n) | m.
البرهان: إذا كان m = kλ(n) + r حيث 0 ≤ r < λ(n), إذن
بالنسبة لجميع الأعداد a الأولية مع n. يأتي من ذلك r = 0, بما أن r < λ(n) وأن λ(n) هو العدد الدنوي الذي يحقق هذه الخاصية.
الاستعمال في التعمية
[عدل]دالة المؤشر لكارميكائيل هي مهمة في علم التعمية. سبب ذلك كونها مستعملة في خوارزمية آر إس إيه.