قالب:قائمة اليوم المختارة/2024-10-28
أعداد مِرْسين الأولية والأعداد التامة (بالإنجليزية: Mersenne Numbers & Perfect Numbers) هما نوعان من الأعداد الطبيعية مرتبطان أحدهما بالآخر، وهما موضوع دراسة في مجال نظريَّة الأعداد. أعداد مرسين الأولية، التي سُمِّيت باسم الراهب مارين مرسين، هي أعداد أولية يمكن كتابتها بالصيغة: 2p − 1، وفيها p هو عدد صحيح موجب. العدد 3 على سبيل المثال، هو من أعداد مرسين الأولية، لأنَّهُ عدد أولي يمكن كتابته بصيغة: 22 − 1.أما الأعداد التامة، فهي أعداد صحيحة موجبة يساوي كل منها مجموع قواسمه الموجبة ما خلا العدد نفسه. العدد 6 على سبيل المثال، عددٌ تام لأنَّ قواسمه الموجبة هي 1 و2 و3، ومجموعها: 1 + 2 + 3 = 6. لكي يكون عدد مرسين أوليًا، يلزم أن يكون p في الصيغة: 2p − 1 أوليًا. لكن هذا لا يعني أن كل عدد أولي p سينتج عدد مرسين أولي. على سبيل المثال، من أجل p تساوي 11، وهو عدد أولي، يكون ناتج 211 − 1 = 2047، وهو ليس عددًا أوليًا، ولا من أعداد مرسين لأنَّهُ حاصل ضرب 23 × 89. بعبارةٍ أخرى، كُل عدد مرسين أولي هو عدد أولي، ولكن ليس كُل عدد أولي هو عدد مرسين أولي. تربط دالة تقابل أعداد مرسين الأولية بالأعداد التامة. تُكتَب الأعداد التامة بالصيغة: 2p − 1 × (2p − 1) وفيها p هو عدد أولي، و2p − 1 هو عدد مرسين أولي. لذا، يولِّد كلُّ عددٍ مكتشف من أعداد مرسين الأولية عددًا تامًا زوجيًا جديدًا مقابل له. مع ذلك، لا يزال من غير المعروف ما إذا كان يوجد أعداد تامة فرديَّة. ويعود ذلك التقابل إلى مبرهنة إقليدس وأويلر، التي وضع أساسها إقليدس وأكمل برهانها ليونهارت أويلر، وتنصُّ المبرهنة على أن العدد التام يكون زوجيًا، إذا وفقط إذا، أمكن التعبير عنه بالصيغة المذكورة سابقًا. بتعبيرٍ آخر، كلُّ عددٍ يمكن صياغته بهذه الطريقة هو عدد تام، وتتبع الأعداد التامة الزوجية كلها هذه الصيغة. على سبيل المثال، عندما تكون p = 2، فإنَّ الناتج من الصيغة 22 − 1 = 3 وهو عدد مرسين أولي، وعند ضربه في 22 − 1، يكون الناتج 2 × 3 = 6 هو عدد تام. مسألة وجود أعداد لا نهائيَّة من أعداد مرسين الأولية والأعداد التامة الزوجيَّة من التحدِّيات التي لم تُحل بعد في علم الرياضيَّات. ويمكن تقريبًا تقدير عدد مرَّات تكرار أعداد مرسين الأولية باستعمال بعض حدسيات مرسين، وهي فرضيات رياضيَّة تتعلَّق بتوزيع وخصائص أعداد ميرسين، وتنصُّ إحدى هذه الحدسيات على أن العدد المتوقع من أعداد مرسين تحت قيمة معينة x يمكن تقديره بالصيغة: (eγ / log 2) × log (log x)