انتقل إلى المحتوى

مستخدم:Hamid moeen

من ويكيبيديا، الموسوعة الحرة

الصوت هو تردد آلي، أو موجة قادرة على التحرك في وسط مادي مثل الهواء ، و الأجسام الصلبة، السوائل، والغازات، ولا تنتشر في الفراغ (إذا وضعنا جرسا في ناقوس زجاجي وفرغنا الناقوس من الهواء ، فإننا لا نسمع صوت الجرس عندما يدق بسبب عدم انتقال هزات (صوت) الجرس في الفراغ). وباستطاعة الكائن الحي تحسس الصوت عن طريق عضو خاص يسمى الأذن. ومصادر الصوت في الطبيعة كثيرة ، فنجده في الرعد وزئير الأسد وانفجار البراكين وحديثا يصدر من السيارات والطائرات والآلات الموسيقية والأجراس. من منظور علم الأحياء فالصوت هو إشارة تحتوي على نغمة أو عدة نغمات تصدر من الكائن الحي الذي يملك العضو الباعث للصوت، تستعمل كوسيلة اتصال بينه وبين كائن آخر من جنسه أو من جنس آخر، يعبر من خلالها عما يريد قوله أو فعله بوعي أو بغير وعي مسبق، ويسمى الأحساس الذي تسببه تلك الذبذبات بحاسة السمع.

ويعد الصوت أساس الكثير من الخبرات التي يكتسبها الانسان. وقد كان الانسان في الماضي لا يعتمد على الأصوات التي يصدرها من حنجرته فحسب ، و إنما أيضا على أصوات الطبول و الأدوات التي تحدث الجلجلة و الخشخشة و أيضا بالمزامير .

وتقدر سرعة الصوت في وسط هوائي عادي ب 343 متر في الثانية أو 1224 كيلومتر في الساعة. تتعلق سرعة الصوت بـ صلابة و كثافة المادة التي يتحرك فيها الصوت وكذلك تعتمد على درجة حرارته.

  • الصوت هو اهتزاز ميكانيكي للوسط ، الموجة الصوتية هي إحدى اشكال الصوت (نماذج الانتشار) التي يتميز بها الصوت ، وكمثال على نماذج أخرى: التيارات الصوتية والتدفق الصوتي]].
  • هنالك عوامل أخرى تؤثر على انتشار الصوت وسرعته كطبيعة المادة (اللزوجة، والكثافة ، ودرجة الحرارة ، وتأثر الوسط بمجال مغناطيسي). فالصوت ينتقل في الهواء والماء والغازات والسوائل وفي قضيب الحديد أو النحاس أو حتى عبر الحوائط والجدران.
  • يستطيع الإنسان سماع الصوت عند ترددات بين نحو 20 هيرتز (إي 20 اهتزازة في الثانية) و 20 كيلو هيرتز (أي 20 ألف اهتزازة في الثانية). الصوت ذو ترردد أعلى من 20.000 هيرتز يسمى تردد فوق صوتي

ultrasound وأما الصوت في ترددات أقل من 20 هيرتز فهي ترددات تحت صوتية infrasound. وتختلف نطاقات سماع الحيوانات عن نطاقات سماع الإنسان .

رسم بياني لانتشار صوت زمارة "الكلارينت" يوضح تغير الضغط مع الزمن متتاليا.

مراجع[عدل]

  1. ^ Fundamentals of Telephone Communication Systems. Western Electrical Company. 1969. صفحة 2.1.
  2. ^ Acoustical Society of America. "PACS 2010 Regular Edition—Acoustics Appendix". اطلع عليه بتاريخ 22 May 2013.  

موجات طولية وموجات مستعرضة[عدل]

عدد من موجات جيبية ذات ترددات مختلفة ؛ الموجات السفلى لها تردد أعلى من الموجات العليا في الشكل. المحور الأفقي يمثل الزمن.

ينتشر الصوت في الغازات والبلازما وفي السوائل على هيئة موجات طولية، وتسمى عند الفيزيائيين موجات ضغطية. أما في المواد الصلبة فينتشر الصوت فيها كموجات طولية وأيضا موجات عرضية. وتتكون موجات الصوت الطولية من تتابع لطبقات يعلو فيها الضغط وطبقات يقل فيها الضغط عن الضغط المتوازن المعتاد ؛ فالموجة هي تتابع لتلك المتغيرات في الضغط ، وتحتاج لوسط مادي تنتشر فيه متتابعة. أما الموجات العرضية في المواد الصلبة فهي موجات متتابعة من إجهاد جزئي عرضي، يكون عموديا على اتجاه انتشار الصوت.

وفي موجات الصوت تنزاح جزيئات الوسط دوريا وتهتز، ولكنها لا تنتقل مع الصوت. وتنتقل الطاقة المحمولة مع الصوت كطاقة حركة لاهتزازات الوسط.

التعريف الفيزيائي[عدل]

تجربة تستخدم شوكتين رنانتين لهما رنين بنفس التردد عندما نطرق أحدهما بمطرقة خشبية أو من لمطاط ، نجد أن الشوكة الثانية تهتز كالأولى بنفس التردد ويحدث رنين بينهما. ذلك أن اهتزاز الهواء الناشيء من اهتزاز الشوكة الأولى يجعل الشوكة الثانية تهتز أيضا حيث أن الشوكتين لهما نفس التردد . من وجهة نظر الفيزياء فالصوت هو موجة. وتنتشر الموجة في السوائل والغازات ك موجة طولية وهي كذلك أيضا في الهواء ؛ أي ينتشر الصوت مثلا في الهواء بطريقة يتردد فيها ضغط الهواء بطريقة دورية بمعنى منطقة هواء مضغوط يتلوه منطقة هواء مخلخل ويتلوه منطقة هواء مضغوط وهكذا. فيكون تغير الموجة في نفس اتجاه انتشار الصوت . أما في المواد الصلبة فينتشر الصوت في موجات عرضية (أي تكون موجاته عمودية على اتجاه انتشار الصوت). وتحرك موجات الصوت جزيئات الوسط (غالبا الهواء) حول حالة وسطية بين الزيادة والنقصان (منطقة هواء مضعوط تتبعه منطقة هواء مخلخل تتبعه منطقة هواء مضغوط وتتبعه منطقة هواء مخلخل، وهكذا) وتنتشر في الهواء بسرعة خاصة، ويرمز لسرعة الصوت c. ولكي تنتقل موجات الصوت فهي تحتاج إلى وسط تنتشر فيه ، مثل الهواء أو الماء أو السوائل أو في وسط مادة صلبة ، مثل قضيب من النحاس أو حديد ، كذلك نسمع الصوت عبر الحائط ؛ ولا ينتشر الصوت في الفراغ.

وتعتمد سرعة الصوت على الوسط الذي ينقلها. وتبلغ سرعة الصوت في الهواء 343 متر في الثانية عند درجة حرارة 20 درجة مئوية و1407 متر /ثانية في الماء عند درجة الصفر المئوي.

يمكن حساب طول الموجة الصوتية  من تردد الموجة f وسرعة الصوت c بواسطة المعادلة:

وفي العادة تكون اختلافات في الضغط أو في الكثافة سببا في تغير سرعتها. ويتضح هذا عندما نتصور مستوي لضغط الصوت يقدر ب 130 dBديسيبل. وهذ يبلغ درجة تألم أذن الإنسان، ويمثل به الضغط الجوي العادي: يبلغ الضغط الجوي للهواء الساكن 101325 باسكال، في حين أن مستوي ضغط صوت قدره 130 dB له قيمة فعلية لضغط الصوت p تبلغ 63 باسكال فقط.

خصائص الموجات الصوتية[عدل]

يعتبر الصوت أحد الظواهر الهامة التي يستعملها الإنسان والحيوان للتخطيط والتفاهم عن طريق حاسة السمع (الاذن) التي يتم بواسطتها تحويل الصوت من موجات صوتية إلى إشارات كهربائية عن طريق الاذن والمخ والتي تتحول إلى معلومات مفهومة وتشمل هذه الظواهر جميع الأصوات على اختلاف مصادرها ووسائلها.

مثلا سماع الأصوات من الآلات الموسيقية وتعدد وسائل الاتصالات المسموعة التي تعتمد على تحويل الطاقة من صورة إلى أخرى وتطور الأجهزة الصوتية التي تأخد أشكالا متعددة في تطبيقاتها الحديثة في مجالات الطب والصناعة والزراعة وغيرها تجعل العلماء والمهتمين بهذا المجال يكثفون الجهد لفهم الظواهر الموجية من حيث مصادرها وكيفية حدوثها وطرق انتشارها والعوامل التي تتحكم فيها ومدى الاستفادة منها.

إذا لاحظنا بعناية الطرق التي يحدث بها الصوت نجد أنه لابد من بذل شغل في كل حالة.الموسيقى يبذل شغلا لتحريك أوتار الآلة الموسيقية كما أن الصوت الناتج عندما تصفق يديك لتشجيع فريقا رياضيا مثلا يأتي من بذل شغل وهذا الشغل المبذول بواسطة اليدين يسبب اضطرابا في الهواء المحيط متحولا إلى طاقة صوتية تتشكل على شكل موجات منتظمة عليه فإن الصوت صورة من صور الطاقة إذا استقبلتها الأذن يحدث الإحساس بالسمع.

وتعتبر دراسة "الصوت" من المواضيع المهمة حيث تستخدم هذه الدراسات في ابحاث الطيران والفضاء والطاقة المتجددة والطاقة النووية والأبحاث الطبية.

ويمكن توليد الصوت بوسائل ميكانيكية أو حرارية. وتستخدم الوسائل الحرارية في بناء المبردات الصوتية الحرارية وكذلك في عمليات الكشف عن الماء الموجود في النفط

تصنيفات الموجات الصوتية[عدل]

تصنف الموجات الصوتية طبقا لتردداتها كما يلي:

الموجات المسموعة[عدل]

هي تلك الموجات التي تقع تردداتها بين 15 هرتز و20.000 هرتز، وتمثل الصوت المسموع بواسطة الأذن البشرية العادية. حيث أن الحد الأدنى لتردد الصوت التي تحس بها الأذن البشرية الطبيعية هو 15 هيرتز تقريبا بينما الحد الأعلى هو 20 الف هرتز، وينخفض هذا المدى عند كبار السن إلى حوالي 12.000 هرتز. وأقصى درجات الإحساس بالصوت لأذن بشرية عادية يقع في المدى بين 5000 هيرتز و8000 هيرتز والذي يشمل ذبذبات الحروف الهجائية. وكما هو معروف يمكن أحداث الموجات السمعية عن طريق الاحبال الصوتية في الإنسان والآلات الموسيقية سواء الوترية أو النحاسية أو الأنبوبية وغيرها من الآلات الأخرى.

الموجات الفوق سمعية[عدل]

هي الموجات التي تزيد تردداتها على 20 الف هيرتز والتي تقع خارج نطاق حاسة الاذن البشرية. وهذا النوع من الموجات ما زال موضع بحث واهتمام مكثف نظرا للتطبيقات المهمة التي تمس مجالات عديدة في الصناعة والطب وغيرهما. وقد أصبح بالإمكان إنتاج موجات فوق صوتية تزيد تردداتها على 1000000 هيرتز ولاتختلف هذه الموجات من حيث الخواص عن الموجات الصوتية الاخــرى إلا أنه نظرا لقصر طول موجاتها فإنه بالإمكان تنتقل على هيئة أشعة دقيقة عالية الطاقة.

الموجات دون السمعية[عدل]

هي الموجات الصوتية التي يقل ترددها عن 20 هرتز ولا تستطيع الاذن البشرية الإحساس بها وأهم مصدر لها هو الحركة الاهتزازية والانزلاقية لطبقات القشرة الأرضية وما ينتج عنها من زلازل وبراكين وعليه انها مهمة جدا في رصد الزلازل وتتبع نشاط البراكين. وتستطيع بعض الحيوانات الإحساس بالزلازل قبل حدوثها .

سرعة الصوت[عدل]

تختلف سرعة الصوت حسب نوع الوسط الذي تنتشر فيه الموجات الصوتية ودرجة الحرارة فتكون أعلى في المواد الصلبة وأقل في السوائل وأقل بكثير في الغازات. وبالنسبة لانتشار الصوت في الهواء فيعتمد على الضغط ، أي أن سرعة الصوت تقل بالارتفاع عن سطح الأرض.

وسرعة الموجات الصوتية في الموائع تعطى بالمعادلة

وسرعة الصوت في الهواء عند درجة الصفر المئوي هي 331.1 م/ث وتزداد هذه السرعة بارتفاع درجة الحرارة. تقدر سرعة الصوت في الماء بـ1450 م/ث عند الدرجة القياسية (15 درجة مئوية). وتتراوح هذه السرعة في المواد الصلبة بين 3000 و6000 متر/ثانية فهي مثلا 5100 م/ث للحديد والألمنيوم و3560 م/ث للنحاس وتبلغ 5200 متر في الثانية في الزجاج.

مستوى ضغط الصوت[عدل]

ضغط الصوت هو الفرق - بالنسبة إلى وسط معين - بين متوسط الضغط الموضعي والضغط في موجة الصوت. يؤخد متوسط مربع هذا الفرق (مطال )، ثم يحسب منه الجزر التربيعي فينتج جذر متوسط التربيعات.

وعلى سبيل المثال، 1 باسكال متوسط جذر التربيع لضغط الصوت (94 ديسيبل) في الجو معناه أن الضغط الفعلي في موجة الصوت تهتز بين (1 ضغط جوي  باسكال) و(1 ضغط جوي  باسكال)، أي بين 101323.6 و101326.4 باسكال. مثل هذا الفرق الطفيف في الضغط الجوي عند تردد صوتي يؤثر على الأذن كصوت ضوضائي يصم وقد يتسبب في إفساد السمع كما يرى من الجدول أدناه.

وتستطيع الأذن البشرية سماع الصوت في نطاق واسع من المطالات، وغالبا ما يقاس ضغط الصوت بواسطة مستوي لوغاريتمي للقياس decibel ديسيبل. ويعرف مستوى ضغط الصوت ورمزه Lp بالمعادلة:

حيث:

p جذر متوسط التربيعات لضغط الصوت،
و  ضغط الصوت العياري.

وتعرف ضغوط الصوت العياريية عادة طبقا للنظام العياري الوطني الأمريكي ANSI S1.1-1994 من 20 ميكرو باسكال في الهواء و1 ميكرو باسكال µPa في الماء. وبدون ذكر النظام العياري لضغط الصوت فلا تعبر قيمة بالديسيبل عن مستوى ضغط الصوت.

ونظرا لأن الأذن البشرية ليس لها استشعار مستوي لترددات الصوت فإن ضغط الصوت عادة ما يوازن بالتردد بحيث يطابق المستوى المقاس عمليا مستوي السمع بالتقريب.

وقامت المفوضية الدولية للتكنولوجيا الكهربائية IEC بتعريف عدة نظم للموازنة. منها الموازنة A-weighting وهي تحاول تمثيل استجابة الأذن البشرية لشوشرة، والموازنة من النوع A توازن مستويات ضغط الصوت يرمز لها دي بي إيه dBA. وتستخدم موازنة نوع C لقياس مستويات قممية عالية.

شدة وجهارة الصوت[عدل]

المهتز الذي ينشر الموجة الصوتية يبعث الطاقة مع هذه الموجة، وتُعرف شدة الصوت بدلالة الطاقة التي تحملها هذه الموجة، ولكي نتحرى الدقة نرسم مساحة قدرها الوحدة عمودية على اتجاه الانتشار، وعندئذٍ سوف نعرف شدة الموجة بأنها الطاقة التي تحملها الموجة في الثانية عبر وحدة المساحات العمودية على اتجاه انتشار الموجة، وحيث أن الشدة هي الطاقة في الثانية، إذن شدة الصوت هي القدرة المارة خلال وحدة مساحات عمودية على اتجاه انتشار الموجة، ووحدات شدة الصوت هي الواط لكل متر مربع.

يوضح الجدول شدة بعض الأصوات، لاحظ أن مدى شدة الصوت الذي تستطيع الإذن أن تسمعه واسع جداً.

تصنيف الصوت تبعا للتردد[عدل]

بحسب التردد يصنف الصوت إلى الأنواع:

  • تحت الصوتية، وهي أقل من 16 هرتز وهي غير مسموعة للأذن البشرية حيث التردد منخفض جدا،
  • نطاق السمع، وهو يمتد من 16 هرتز إلى نحو 20.000 هرتز، وهي أصوات مسموعة للبشر،
  • فوق صوتية، بين 20.000 هرتز إلى 6و1 جيجا هرتز (6و1 مليار ذبذبة في الثانية)، وهي غير مسموعة للبشر، حيث ترددها عالي.
  • صوتية فائقة، موجات صوتية ترددها أكبر من 1 مليار هرتز (1 مليار ذبذبة/ثانية)، وهذة قد لا تنتشر.

من خصائص الأمواج الصوتية:[عدل]

تتألف الموجه الصوتية أو الأمواج الصوتية في أي وسط من حركة اهتزازية حركة اهتزازية سريعة للجزيئات التي تؤلف الوسط. فحركة إحدى جزيئات الوسط تؤدي إلى اضطراب الجزيئات المجاورة، وهذه بدورها تقوم بنفس العمل، وهكذا دواليك، بحيث أن موجة من الإضطراب تعبر الوسط ابتداء من نقطة الحركة الأولى. وعندما تهتز الشوكة الرنانة في الهواء، فإن حركة الشعبة المهتزه إلى الأمام تضغط الهواء المجاور. إلا أنه سرعان ماتعود هذه المنطقة المنضغطة من الهواء إلى حالتها الاعتيادية بفضل الخاصة المطاطية للهواء وعلى حساب انضغاط المناطق المجاورة، بحيث أن موجه من الضغط الزائد تنتشر ابتداء من الشعبة المهتزة من الشوكة الرنانة، وبنفس الطريقة فإن حركة الشعبة المهتزة إلى الخلف تولد موجه من الضغط الناقص أو التخلخل.

تولد الشوكة الرنانة على هذه الشاكلة مانسميه بالصوت الصافي Pure Tune الذي يعبر عنه كميا بعنصرين هما تواتر الاهتزاز Frequency وسعته Amplitude مطالأو شدته Intensity.

إن ذروة الشوكة رنانة - وبالتالي أي جزيئة من جزيئات الوسط المجاور لها -تعاني حركة بسيطة منسجمة في الاتجاه الرئيسي لانتشار الموجة بحيث يمكن تمثيل مواضع هذه الجزيئة في حركتها بالنسبة للزمن بموجة جيبية. أما إذا كانت حركة مصدر الاهتزاز حركة غير بسيطة ولا منسجمة نحو الأمام والخلف، فإن شكل الموجة يكون معقدا وهذه هي صفة أكثر المنبهات الصوتية الطبيعيية.

هذا ويمكن رياضيا تحليل الموجة المعقدة إلى موجتين أو أكثر من الموجات الجيبية التي يمكن حينئذ تحديدها بالعنصرين السابقين، أي التواتر والشدة.

شدة الموجة الصوتية:

هي كمية الطاقة التي تؤثر في سنتيمتر مربع واحد من الوسط أثناء مرور الموجة الصوتية، حيث أن وحدة الديسبل هي الواحدة المستعملة للتعبير عن كمية طاقة الموجه. ونظرا للشدات الصوتية المتغيرة بشكل كبير والتي تستقبلها الأذن وتميزها، فإن هذه الشدات يعبر عنها بمصطلحات لغاريتمية لقيمها الحقيقية.

عندما نقول أن شدة صوت ما هي كذا ديسبلات فهذا يعني أن هذا الرقم هو عشرة أضعاف لوغاريتم نسبة طاقة هذا الصوت إلى طاقة أخرى متفق عليها.

الطاقة = (الضغط)2

ديسبل = 10 X (الضغط)2

ديسبل = 10 X الطاقة

مثال على ذلك: إن الفرق بين أقل شدة وأقوى شدة تتحملها أذن الإنسان هي (120) ديسبل. وهذه الكمية هي نسبة طاقة صوت الرعد القوي إلى طاقة صوت في العتبة الدنيا للسمع، ويمثل الديسبل الواحد زيادة حقيقية في قدرة الصوت تعادل 1، 26 مرة.

ولما كان الديسبل مقياس نسب، فلا بد من اعتماد معيار أو مستند للمقارنة به والنسبة إليه. فيمكن الاعتماد مثلا على العتبة الدنيا للسمع، ولكن هذا المعيار يختلف من شخص لآخر ويختلف كثيرا باختلاف تواترات الصوت.

لذلك وتلافيا لهذه الاعتبارات، اتفق المعنيون بهذا الأمر على اعتماد معيار اتفاقي هو الميكروواط. ولما كان الواط هو مقياس لمعدل تدفق الطاقة لكل سنتيمتر مربع فالميكروواط يقارب العتبة الدنيا للسمع التسمح بسماع صوت تواتره (1000) ذبذبة في الثانية.

مراجع[عدل]

  1. ^ Fundamentals of Telephone Communication Systems. Western Electrical Company. 1969. صفحة 2.1.
  2. ^ Acoustical Society of America. "PACS 2010 Regular Edition—Acoustics Appendix". اطلع عليه بتاريخ 22 May 2013.