معيار (رياضيات)
المظهر
يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. (يونيو 2024) |
في الجبر الخطي والتحليل الدالي والمجالات المتعلقة بهما في الرياضيات، معيار أو نظيم (بالإنجليزية: Norm) هو دالة تعطي عددا حقيقيا موجبا لكل متجهة من فضاء متجهي ما. بحيث تحقق ثلاث خاصيات محددة (أنظر التعريف).
تعريف
[عدل]ليكن فضاء متجهي معرف على حقل مزود بقيمة مطلقة
نعرف المعيار على أنه كل دالة :حيث :
- (حيث هي المتجهة المنعدمة ) .
- (التجانس المطلق).
- (متباينة المثلث).
ملاحظة بخصوص التعريف
[عدل]بعض الكتب تشترط في تعريفها أن تحقق خاصية أخرى وهي لكل من
لكنه لا توجد ضرورة لإدراجها في التعريف ما دامت الخاصيات المذكورة في التعريف تستلزم تحقيق هذه الخاصية :
أمثلة
[عدل]المعيار الاقليدي
[عدل]في فضاء متجهي إقليدي وهو فضاء متجهي معرف على حقل الأعداد الحقيقية مزود بجداء سلمي (لكل عنصر و من ) و بُعده منتهٍ كمثال الفضاء المتجهي
نعرف ونرمز للمعيار الاقليدي بـ :
في حالة المثال يكون الجداء السلمي غالبا (لأنه يمكن إنشاء جداء سلمي مختلف ) :
انظر أيضا
[عدل]||x|| و ||−x|| ليسا بالضرورة متساويين.
مراجع
[عدل]في كومنز صور وملفات عن Vector norms.