في حساب المتجهات، التباعد[2] ورمزه أو مؤثر تفاضلي على غرار مؤثري الدورانوالتدرج. يقيس مؤثر التباعد شدة مصدر الحقل المتجهي (حيث التباعد أكبر من الصفر) أو مصرفه (حيث التباعد أقل من الصفر) عند نقطة معينة . ويؤثر التباعد على الحقول المتجهة وينتج عنه حقل قياسي. أما إذا كان التباعد صفرا فهذا يعني أن الحقل المتجهي بلا مصدر ولا مصرف، ويسمى الحقل في هذه الحالة حقلا متجهيا ملفيا[الإنجليزية] لإنه ليس له بداية ولا نهاية . ومن الأمثلة على ذلك المجالات المغناطيسية. فخطوط المجال المغناطيسي للكرة الأرضية تخرج من القطب الجنوبي (المصدر) وتتجه إلى القطب الشمالي (المصرف) . فعند قياس تباعدها حول الأرض فالنتيجة سوف تكون صفرا لإن كل ما يخرج منها يعود إليها، وهذا ما أكد استحالة وجود مغناطيس أحادي القطب. وكذا ُفإن تباعد أي مجال دوار يساوي صفر أي أن : مهما كان الحقل A.
يعرف تباعد الحقل المتجهي الذي تمتد مركباته في ن من الأبعاد على أنه قسمة المركبة بالكمية . على سبيل المثال إذا كانت ن=3 أي في ثلاثة أبعاد فإن التباعد يعطى بالصيغة التالية:
والآن للتعميم على الحقل في ن من الأبعاد. فإن التباعد يكون:
يدرس التفاضل الشعاعي العديد من العمليات التفاضلية معرفة في الحقل الشعاعي أو السلمي، والتي يعبر عنها غالباً على شكل المؤثر نابلا (). العمليات الرئيسية الأربعة في التفاضل الشعاعي هي: